Modified moving least squares with polynomial bases for scattered data approximation

نویسندگان

  • Grand Roman Joldes
  • Habibullah Amin Chowdhury
  • Adam Wittek
  • Barry Doyle
  • Karol Miller
چکیده

One common problem encountered in many fields is the generation of surfaces based on values at irregularly distributed nodes. To tackle such problems, we present a modified, robust moving least squares (MLS) method for scattered data smoothing and approximation. The error functional used in the derivation of the classical MLS approximation is augmented with additional terms based on the coefficients of the polynomial base functions. This allows quadratic base functions to be used with the same size of the support domain as linear base functions, resulting in better approximation capability. The increased robustness of the modified MLS method to irregular nodal distributions makes it suitable for use across many fields. The analysis is supported by several univariate and bivariate examples. Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The approximation power of moving least-squares

A general method for near-best approximations to functionals on Rd, using scattered-data information is discussed. The method is actually the moving least-squares method, presented by the Backus-Gilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives’ approximations. For the interpolation problem this approach gives Mclain’s method. The method ...

متن کامل

Stable Moving Least-Squares

It is a common procedure for scattered data approximation to use local polynomial fitting in the least-squares sense. An important instance is the Moving Least-Squares where the corresponding weights of the data site vary smoothly, resulting in a smooth approximation. In this paper we build upon the techniques presented by Wendland and present a somewhat simpler error analysis of the MLS approx...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

On Generalized Moving Least Squares and Diffuse Derivatives

The Moving Least Squares method (MLS) provides an approximation û of a function u based solely on values u(xj) of u on scattered ”meshless” nodes xj . Derivatives of u are usually approximated by derivatives of û. In contrast to this, we directly estimate derivatives of u from the data, without any detour via derivatives of û. This is a generalized Moving Least Squares technique, and we prove t...

متن کامل

Quantification of Uncertainty from High-dimensional Scattered Data via Polynomial Approximation

This paper discusses a methodology for determining a functional representation of a random process from a collection of scattered pointwise samples. The present work specifically focuses onto random quantities lying in a high-dimensional stochastic space in the context of limited amount of information. The proposed approach involves a procedure for the selection of an approximation basis and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 266  شماره 

صفحات  -

تاریخ انتشار 2015